Search results

Search for "3D network" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • . 3D porous nanoscale hybrid SnO2/CuO foam sensors were prepared by Jeun et al. via electrochemical deposition followed by thermal oxidation [72]. These foam sensors were studied for H2S gas sensing. Figure 10a and Figure 10b show SEM images of the porous and 3D network structure of as-prepared Sn/Cu
  • at 250 °C. The study shows that the SnO2/CuO nanoscale hybrid foam sensor outperforms the porous 3D network structure, mainly due to larger surface area, the formation of p–n junctions, and the sulfurization of CuO on metallic conductors. The foam sensor also showed a response to 20 ppm of hydrogen
PDF
Album
Supp Info
Review
Published 09 Nov 2021

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • electroactive materials, efficiently reducing the internal resistance and enhancing the rate capability. Therefore, novel hybrid nanorods and nanoparticles of the electroactive metal oxides incorporated into a porous, conductive 3D network of CA could be promising electrode materials for supercapacitors. Based
  • uniformly filled the 3D network of CA, providing plenty of sites for coupling with ZIF-67. Third, ZIF-67 was in situ crystallized on the surface of the NiMoO4/CA skeleton by a hydrothermal method. Finally, after the pyrolysis of the NiMoO4@ZIF-67/CA precursor at 350 °C for 2 h under air atmosphere, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • attributed to the high electronic and ionic conductivity provided by the 3D network structure of the self-standing electrodes. This design and preparation method for all-fiber-based lithium-ion batteries provides a novel strategy for the development of high-performance flexible batteries. Keywords: 3D
  • grains in the fibers. SEM images of LiFePO4 and Li5Ti4O12 nanofiber membranes are shown in Figure 3. It can be seen that the fiber membranes after heat treatment exhibit a 3D network structure, which is the reason for the high flexibility of the electrode. The high-magnification SEM images show uniform
  • keep the 3D network structure after many cycles. TO summarize, the high rate and good cycling performance are mainly attributed to the high electronic and ionic conductivity of the free-standing electrodes with a stable three-dimensional network structure as shown in Figure 15, in which the high
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • . Conclusion In summary, a lightweight TiO2/GO coating, applied as an interlayer for Li/S batteries, has been prepared by using a simple method. The hierarchically porous TiO2 nanoparticles are tightly wrapped in GO sheets and formed a 3D network structure, which can capture the polysulfides by physical and
PDF
Album
Full Research Paper
Published 19 Aug 2019

Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects

  • Hejin Jiang,
  • Huahua Fan,
  • Yuqian Jiang,
  • Li Zhang and
  • Minghua Liu

Beilstein J. Nanotechnol. 2019, 10, 1608–1617, doi:10.3762/bjnano.10.156

Graphical Abstract
  • formed 3D network gels. The SEM results reveal that the nanoscale chirality of the 3NCLG assembly is opposite to that of the 2NCLG and 4NCLG assemblies. It is suggested that the nanoscale chirality of the formed nanostructures did not strictly follow the chirality of the chiral carbon centers in
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • transfer resistance with respect to the primary CNTs as determined by electrochemical impedance spectroscopy. Thus, we speculate that the improvement in Pt dispersion is due to a better conductivity within the 3D network and a facilitated electron transfer, which may facilitate Pt nucleation at the CNT
  • indicated improved tolerance towards CO-like carbonaceous species poisoning. The improvement of electrochemical performance is attributed to the homogenous dispersion of Pt nanoparticles on the highly cross-linked 3D network. The prepared carbon electrode was shown to be a competitive catalyst support for
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • in a faster performance degradation, due to its weak interlayer van der Waals forces, even though it outranks the 3D network structure in terms of improved electronic properties. The structural transformation of 2D layered WO3·nH2O into 3D nanostructures is observed via ex situ Raman measurements
  • disadvantage of 2D TMOs and their failure mechanism. Tungsten trioxide (WO3) is one of the few TMOs with both excellent electrochemical and electrochromic properties [19][20][21][22][23]. It has a three-dimensional (3D) network lattice structure consisting of corner-sharing or edge-sharing WO6 octahedra [24
  • electrochemical tests of three typical samples confirmed a faster performance degradation in the 2D nanostructures compared to 3D nanostructures, supported by the SEM investigation and further explained by subsequent ex situ Raman measurements. Although 2D layered WO3·nH2O nanostructures outranks the 3D network
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • method. The urchin-like morphology of the samples provided a large specific surface area. The response of the sensor was 17.4% to 100 ppm NO2 at room temperature, while the pure rGO sensor only exhibited 7.7% response under the same conditions. Apart from the conductive 3D network channels provided by
PDF
Album
Review
Published 09 Nov 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • the simulations, a homogenous film of carbon is considered. In reality, the carbon nanotubes form a 3D network which goes along with space in between the nanotubes and many top and bottom sides in the film. Hence, in the experiment the He and Ne ions spend some time in vacuum in between the MWCNTs
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • micrographs of rGO, rGO-Fe3O4 and rGO-PDA@Fe3O4 aerogels. From the low magnification images one can determine the pore size distribution and observe interconnected 3D network of aerogel-forming rGO structures (Figure 1a–c). At higher magnification, the agglomerates of MNPs are clearly visible (Figure 1e,f
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • facile preparation process of carbon aerogels, these materials are viable candidates for use in oil–water separation and environmental protection. Keywords: 3D network structure; carbon aerogel; cellulose nanofibers; graphene oxide; oil absorption; poly(vinyl alcohol); Introduction In recent years, oil
  • environment, CNFs with a high aspect ratio and high surface area have potential for forming a 3D network structure. As a result, research on cellulose aerogels has attracted more and more attention because of its outstanding properties such as high porosity, low thermal conductivity and low density [9][10
PDF
Album
Full Research Paper
Published 12 Feb 2018

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • substrates, containing 3–12 graphene layers [1]. The dimensions of the nanosheets are typically up to a few micrometers. The interconnected vertical 3D network is anchored onto a nanometer-thick graphitic base layer grown on the VGNs–substrate interface. Their unique properties such as large surface area
PDF
Album
Full Research Paper
Published 10 Aug 2017

Miniemulsion copolymerization of (meth)acrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

  • Bertha T. Pérez-Martínez,
  • Lorena Farías-Cepeda,
  • Víctor M. Ovando-Medina,
  • José M. Asua,
  • Lucero Rosales-Marines and
  • Radmila Tomovska

Beilstein J. Nanotechnol. 2017, 8, 1328–1337, doi:10.3762/bjnano.8.134

Graphical Abstract
  • composites maintained the reinforcement, whereas the blends behaved as a liquid-like material. This suggests the formation of a 3D network, in good agreement with the high content of insoluble polymer in the in situ composites. Keywords: electrical conductivity; hybrid polymers; mechanical properties
  • mechanical and thermal reinforcement was achieved due to the 3D network formation of the filler within the polymer matrix and creation of strong interactions (including grafting between the phases). Experimental Materials Multiwalled carbon nanotubes (MWCNTs, length = 5–10 µm; diameter = 10–20 nm) were
  • the loss moduli. At 60 ºC, which is above the main transition region of the polymer, the in situ composites maintained the reinforcement, whereas the blends behave as a liquid-like material. This suggests the formation of a 3D network in good agreement with the high content of insoluble polymer in the
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • . have prepared α-Fe2O3 NP anchored graphene hybrid materials by hydrothermal methods which have good cycling performance and enhanced rate capability [145]. A 3D network of free-standing hollow Fe2O3–graphene has been fabricated by vacuum filtration and a thermal reduction process. This network shows
PDF
Album
Review
Published 24 Mar 2017

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • carbon coatings can be clearly observed on the particle surface as well as amorphous carbon bottlenecks between particles forming a consolidated 3D network (Figure 1B). Concerning the LNM/C composites obtained from cross-linked PVA, the continuous carbonaceous coatings on oxide particles are absent. The
PDF
Album
Full Research Paper
Published 09 Dec 2016

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • about Rg = 0.58 μm. At larger Q (>0.1 nm−1) scattering is determined from individual magnetite nanoparticles of Rg 7.9 nm showing a Q−3 power law indicating a mass fractal structure (a structure containing branching and crosslinking to form a 3D network). The diameter D of the magnetite particles can
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

  • Sławomir Boncel,
  • Krzysztof Z. Walczak and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2011, 2, 311–317, doi:10.3762/bjnano.2.36

Graphical Abstract
  • (SDBS), to water (1% by weight), ensures good wetting of the nanotubes allowing the infiltration to occur. Saturated sucrose solution infiltrates the HACNT arrays but in considerably prolonged time. This behaviour can be explained if sucrose is considered as a non-ionic surfactant forming a 3D-network
PDF
Album
Letter
Published 20 Jun 2011
Other Beilstein-Institut Open Science Activities